
Exercise Session for Financial Data Analysis

Summer term 2011

Problem Set 3

Write to haas@stat.uni-muenchen.de if you want to present. You can also indicate

multiple exercises (ordered according to your preference) in case your most preferred

problem has already been assigned.

Problem 1 Suppose that the return rt of your portfolio is generated by

rt = 0.025 + ϵt

ϵt = ηtσt, ηt
iid∼ N(0, 1)

σ2
t = 0.025 + 0.075ϵ2t−1 + 0.9σ2

t−1.

Your current estimate for σ2
t is its unconditional expectation. Unfortunately, however,

due to unpredictable adverse market conditions, your portfolio suffers from an unusually

large negative shock, so that rt = −4.75. Calculate the 1% Value–at–Risk for period

t+ 1.

Problem 2

Consider the following GARCH(1,1) model for returns rt,

rt = c+ ϵt (1)

ϵt = σtηt, ηt
iid∼ Normal(0, 1) (2)

σ2
t = ω + αϵ2t−1 + βσ2

t−1 (3)

ω > 0, α ≥ 0, β ≥ 0 (4)

α+ β < 1 (5)

3α2 + 2αβ + β2 < 1. (6)

(a) What is the interpretation of σ2
t ?

(b) What is the reason for the parameter restrictions (4) and (5)?

(c) Derive the unconditional variance of rt defined by (1)–(5).
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(d) Derive the autocorrelation of the squared process implied by model (2)–(6), i.e.,

Corr(ϵ2t , ϵ
2
t−τ ), τ = 1, 2, . . .

Hint: Without derivation, you can use the result that, for a stationary ARMA(1,1)

process,

Yt = ϕYt−1 + θut−1 + ut,

where {ut} is white noise, the autocorrelation function is given by

Corr(Yt, Yt−τ ) = ϕτ−1 (1 + ϕθ)(ϕ+ θ)

1 + 2ϕθ + θ2
, τ = 1, 2, . . .

Problem 3

Model (1)–(5) has been fitted to the daily percentage log–returns1 of the German stock

market index DAX 30 from January 2000 to March 2010 (T = 2671 daily observations).

(i) Estimation results are reported in Table 1 on the next page. Would you say that

the estimates imply a high persistence of volatility?

(ii) As an alternative model with the same number of parameters, an ARCH(2) process

is considered for the DAX returns, where (3)–(5) are replaced by

σ2
t = ω + α1ϵ

2
t−1 + α2ϵ

2
t−2, ω > 0, α1, α2 ≥ 0, α1 + α2 < 1. (7)

Figure 2 shows, both for the ARCH(2) and the GARCH(1,1), the autocorrelation

function (ACF) of the squares of the standardized residuals

η̂t =
ϵ̂t
σ̂t

, (8)

where ϵ̂t and σ̂t are estimates of ϵt and σt, as implied by the fitted models, t =

1, . . . , T .

On the basis of Figure 2, which of the two models appears to provide the more

appropriate specification for the volatility dynamics of the DAX returns? Could

the outcome of this comparison have been expected from the properties of the

GARCH(1,1) model, as compared to low–order ARCH specifications? Explain.

(iii) For the standardized residuals (8), Table 1 also reports the Jarque–Bera test statis-

tic (denoted by JB) along with its p–value underneath. Does this test indicate that

there is a problem with model (1)–(5)? If so, what could be done to improve the

model?
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Table 1: GARCH(1,1) parameter estimates for the DAX returns

ĉ ω̂ α̂ β̂ JB∗

0.0668
(0.0213)

0.0211
(0.0053)

0.0942
(0.0104)

0.8985
(0.0103)

162.3
(0.0000)

The first four columns report parameter estimates for
the GARCH(1,1) model (1)–(5) fitted to the DAX re-
turns, with standard errors given in parentheses.
∗JB is the value of the Jarque–Bera test statistic ap-
plied to the standardized residuals η̂t = ϵ̂t/σ̂t, as de-
fined in (8), with p–value underneath.

Problem 4 We have seen that the volatility forecasts of a covariance stationary

GARCH model converge to the long–term (or unconditional) volatility as the forecast

horizon increases. Alexander (2008)2 argues that “the long term volatility forecast is

very sensitive to small changes in the estimated values of the GARCH parameters”, so

that it makes sense that the analyst imposes a personal view for long–term volatility

before the parameters driving the volatility dynamics are estimated, “and then use the

GARCH model to fill in the forecasts of volatility over the next day, week, month etc.

that are consistent with this view.” This is also referred to as volatility targeting.

(a) The long–term variance is supposed to be σ̄2. How can we reparameterize the

standard GARCH(1,1) model σ2
t = ω + αϵ2t−1 + βσ2

t−1 such that, when estimated,

we get a long–term volatility of σ̄2?

(b) Consider the exponentially weighted moving average (EWMA) volatility model

(also known as RiskMetricsr model3),

σ2
t = (1− λ)ϵ2t−1 + λσ2

t−1 = (1− λ)
∞∑
i=1

λi−1ϵ2t−i, 0 < λ < 1. (9)

Find the multi–step–ahead variance forecasts for the process (9) and compare

them with those of a covariance stationary GARCH(1,1) model from last week’s

problem set.

1That is, if It is the index level at day t, then rt = 100× log(It/It−1).
2Market Risk Analysis Vol. 2: Practical Financial Econometrics, Wiley, p. 144.
3Cf. JP Morgan: RiskMetrics—Technical Document, New York, 1996; see

http://www.riskmetrics.com/system/files/private/td4e.pdf.
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Problem 5 Assume that the return of your portfolio, rp, is normally distributed

with mean µ and variance σ2, i.e., its density function is given by

fNormal(rp;µ, σ
2) =

1√
2πσ

exp

{
−(rp − µ)2

2σ2

}
, rp ∈ R. (10)

(a) Assume that µ = 2.5 and σ2 = 2.25. Your portfolio is worth 1 $. Compute the

1% Value–at–Risk.

(b) Now assume that the portfolio return has a Laplace (or double exponential)4 dis-

tribution with mean µ and variance σ2, i.e., its density function is

fLaplace(rp;µ, σ
2) =

1√
2σ

exp

{
−
√
2

∣∣∣∣rp − µ

σ

∣∣∣∣} , rp ∈ R. (11)

The Laplace distribution has sometimes been found to be useful for modeling stock

return distributions,5 see also Figure 10 for the standardized densities with µ = 0

and σ2 = 1.

Assume that, in (11), µ = 2.5 and σ2 = 2.25. Find the 1% Value–at–Risk for a

portfolio which is worth 1 $. Compare the result with what has been obtained in

part (a).

Problem 6 For the monthly (demeaned) returns of the MSCI Germany index from

January 1970 to June 2008 (T = 462 observations), the regression

ϵ̂2t = b0 +
10∑
i=1

bîϵ
2
t−i + ut,

where ϵ̂ is the demeaned return, gives a coefficient of determination of R2 = 0.0444

(i) Explain how you can use this information for conducting a test for ARCH effects.

(ii) What is the result of the test? What can we say about its p–value?

4This is a special case of the GED distribution with p = 1.
5E.g., C. W. J. Granger and Zhuanxin Ding (1995): Some Properties of Absolute Return, An

Alternative Measure of Risk, Annales D’économie et de Statistique, 40, 67–91; and Mikael Linden

(2001): A Model for Stock Return Distribution, International Journal of Finance and Economics, 6,

159–169.
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Table 2: Quantiles of the χ2 distribution.

ν z0.9 z0.95 z0.975 z0.99

1 2.7055 3.8415 5.0239 6.6349

2 4.6052 5.9915 7.3778 9.2103

3 6.2514 7.8147 9.3484 11.3449

4 7.7794 9.4877 11.1433 13.2767

5 9.2364 11.0705 12.8325 15.0863

6 10.6446 12.5916 14.4494 16.8119

7 12.0170 14.0671 16.0128 18.4753

8 13.3616 15.5073 17.5345 20.0902

9 14.6837 16.9190 19.0228 21.6660

10 15.9872 18.3070 20.4832 23.2093
ν denotes the degrees of freedom of the χ2 distribution,
and zα is the α–Quantile, that is, zα is such that∫ zα

0

χ2(z; ν)dz = α, (12)

where χ2(z; ν) is the density function of a χ2 random vari-
able with ν degrees of freedom.

Problem 7 Consider the AR(1)–GARCH(1,1) process

rt = c+ ϕrt−1 + ϵt, ϵt = ηtσt, ηt
iid∼ N(0, 1),

σ2
t = ω + αϵ2t−1 + βσ2

t−1,

ω > 0, α, β ≥ 0, α+ β < 1.

For a sample r1, r2, . . . , rT , construct the conditional log–likelihood function. What if

ηt is assumed to have a Student’s t distribution with ν degrees of freedom instead of a

standard normal distribution?
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Figure 1: Standard (i.e., zero mean and unit variance) normal (dashed) and Laplace
(solid) densities, given by (10) and (11), respectively, with µ = 0 and σ2 = 1.
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Figure 2: Shown are, for the fitted ARCH(2) (top plot) and GARCH(1,1) (bottom plot)

processes, the autocorrelation functions (ACF) of the squares of the standardized resid-

uals (8), i.e., η̂t = ϵ̂t/σ̂t. Dashed lines represent approximate 95% confidence intervals.
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